

EEE 8005 – Student Directed Learning (SDL)

Industrial Automation – Genetic Algorithms
Written by: Shady Gadoue

[1]

Module Leader: Dr. Damian Giaouris

Damian.Giaouris@ncl.ac.uk

mailto:Damian.Giaouris@ncl.ac.uk�

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

2

Genetic Algorithms

Introduction
Genetic Algorithm (GA) is a search technique that mimics the mechanisms of natural

selection. Recently, GA has been recognized as an effective and powerful technique to

solve optimization and search problems which represents an intelligent utilization of a

random search within a defined search space to solve a problem. During GA computing,
a population of artificial individuals is modified repeatedly based on biological evolution

rules that converge towards better solution of the problem being solved. At each step

individuals are selected in random from the current population to be parents. These

individuals are used to produce children for the next generation. Based on biological

basics, the fittest individuals survive and the least fit die. Through successful generations,

the population evolves towards an optimal solution. Compared with other optimization

techniques, particularly gradient search methods, GA is superior in avoiding local minima

which is a common aspect of nonlinear systems. The difference between local and global

minimum is shown in Fig.1. Furthermore, GA is a derivative-free optimization technique

that eliminates the need to the existence of a function derivative to solve the optimization

problem. This makes it more attractive for applications that involve nonsmooth or noisy

signals. It can be also used to solve problems that are ill defined. GA is considered as a

part of evolutionary computing technique which is a rapidly emergent area of artificial

intelligence.

Fig.1 Global and local minimum

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

3

Biological Background
Cell is the building unit of all living organisms. In each cell there is a set of

chromosomes which are strings of DNA. Every chromosome consists of genes which

encode a particular protein. During reproduction, first occurs crossover. Genes from

parents form in some way the whole new chromosome. However, the new created

offspring can be mutated. Mutation occurs when the elements of DNA are a bit changed.

These changes are mainly caused by errors in copying genes from parents. The fitness of

an organism is measured by success of the organism in its life. With generations, the

good characteristics remain and the bad ones died which represents “The survival of the

fittest”.

Steps of GA
GA starts with an initial population containing a number of chromosomes where each

one represents a solution of the problem (for example a possible pair of optimum PI gains

or a value of x that minimises f(x)). The most common way of representing a

chromosome is performed using fixed-length binary bit string which is combinations of

0s and 1s representing a number in binary form (there are many ways to achieve that but

this is outside the scope of this module, we will simply assume that using specific Matlab

commands we can represent a chromosome in a binary form). Each bit of the binary

string is called gene. For example an individual in the initial population can be

represented by the binary string 11010 where as another individual is represented by

another binary string 010110. Hence, the initial population is a collection of randomly

generated individuals encoded to binary strings and representing different solutions to the

optimization problem. Once the initial population has been chosen (possible pair of PI

gains…) a fitness function is used to evaluate the performance of each chromosome. The

fitness function is a numerical value proportional to the nearness of the individual to the

solution. So if the task is to minimize a function f the individual giving the minimum

value of f is considered to be the most fit and therefore assigned highest fitness value.

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

4

Example

Assume it is required to minimize the function:

() 2
2

2
121, xxxxf +=

And the number of individuals n=4.

Assume that the initial population consist of four individuals:

2042;2
212;1
125102;5
200102;10

41

31

21

11

===
===
===
===

fxx
fxx
fxx
fxx

Assuming that these individuals are encoded by the following binary strings: 1110010,

0001010, 1100101, 0111010. The fitness value of each individual could be the inverse of

the objective function value f, so the lowest the objective function value the highest the

fitness value. The fitness off the four individuals can be Fitness1=1/200, Fitness2=1/125,

Fitness3=1/2, Fitness4=1/20. It can be seen that the fittest is the third individual with least

value of the function to be minimized, followed by the fourth then the third and finally

the first.

Generally, and assuming an initial population, GA consists of three main stages:

Selection, Crossover and Mutation:

• Selection stage:

As it has been seen in the initial population there are many chromosomes that are not

fit. These are ignored and only the fittest are used for reproduction, i.e. to produce better

chromosomes (better PI gains…). In order to keep the size of the initial population fixed

some fit chromosomes will be used more than once, for example if the initial population

had 10 chromosomes and we decided to use only 8 then 2 selected chromosomes will be

used twice (or one three times) to keep the size fixed at 10. This new subset is called

“mating pool”. The selected individuals are called parents and the new chromosomes that

are created in the next generation are called children. As it will be mentioned later a child

is created by combing 2 parents. The purpose of this operation is to obtain a mating pool

with fittest individuals according to a probabilistic rule that allows the fittest individuals

to be mated into the new population. Among many parent selection rules, "Roulette

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

5

Wheel selection" is the most common technique used in the selection stage. According to

this technique, the probability of an individual to be selected for reproduction is directly

proportional to its fitness value and can be calculated from the ratio:
FitnessofSum

FitnessIndividual .

In our case sum of fitness =1/200+1/125+1/2+1/20=563/1000, The third individual will

have (1/2)/(563/1000)=500/563 selection probability, the fourth 50/563, the second 8/563

and the first individual 5/563.

To follow the concept of the “survival of the fittest”, the mating pool may consist of two

copies of the third individual (the fittest individual has higher probability to survive), one

copy of the fourth individual and a copy of the second individual and no copy of the first

individual (the least fit has lower probability to survive and is therefore eliminated). This

is according to the "Roulette Wheel selection" where the fittest individuals have more

chance to survive. Therefore the mating pool may consist of 1100101 1100101 0111010

0001010 where the first individual (the least fit) may probably “die”. The selected

individuals will be used in the next GA step.

• Crossover stage:

After selection stage, genetic crossover operation is then applied between parent pairs

from the mating pool. Each pair will produce 2 children (hence the size of the population

remains fixed). The crossover operation forces the children (the new chromosomes) to

have genes (properties/characteristics) from both parents, i.e. the genes of a child are a

mixture of the two parents. This crossover operation does not take place always but is

performed with a crossover probability (Pc). If this probability is set to 1, then crossover

always occurs between parents. The crossover operation can be one-point or double point

operation. In the case of one-point crossover, the bits of the two parents are interchanged

at a single location while in the double point case, parent bits are swapped between two

locations. Therefore a probable crossover for example 1 can be described as shown in

Fig.2.

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

6

(a) Single point crossover

(b) Double point crossover

Fig.2 Example of Genetic crossover

• Mutation stage:

The last operation is the genetic mutation which takes place after the crossover

operation. The application of genetic mutation introduces a change in the offspring bit

string to produce new chromosomes which may represent a solution of the problem and

in the same time to avoid the population falling in a local optimal point. The mutation

operation is performed with a mutation probability (Pm) which is usually low to preserve

good chromosomes and to mimic real life where the mutation is rarely happened. An

example of the mutation process for the last example assuming single point crossover is

given below:

Offspring Binary String 1101010 Before mutation

 1101000 After mutation

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

7

The application of these three basic operations allows the creation of new individuals

which may be better than their parents. This algorithm is repeated for many generations

and finally stops when reaching individuals providing optimum solution to the problem.

The GA architecture is shown in Fig.3.

Fig.3 Genetic Algorithm Architecture

Useful definitions
Crossover probability says how often will be crossover performed.

Mutation probability says how often will be parts of chromosome mutated. Mutation is

made to prevent falling GA into local extreme, but it should not occur very often, because

then GA will in fact change to random search.

Chromosome: The Chromosome contains a solution to the problem in form of genes.

Individual: Individual is another way to name the chromosome.

Gene: The Gene is a part of the chromosome. It contains a part of solution.

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

8

Population size says how many chromosomes are in population (in one generation).

Fitness function: is the function to be optimized. This represents how close an individual

is close from the solution of the problem.

Mutation: Changing a random gene in an individual.

Selection: Selecting individuals for creating the next generation.

Parents and children: To create the next generation, the genetic algorithm selects

certain individuals in the current population, called parents, and uses them to create

individuals in the next generation, called children. Typically, the algorithm is more likely

to select parents that have better fitness values.

Disadvantages of GA

• Highly computational effort

• They can not find the exact solution but may find a near to optimal solution

• Very slow

GA Programming using Matlab
Solving optimization problems using GA can be performed using the Genetic

Algorithm and Direct Search Toolbox in Matlab. This toolbox includes routines to solve

optimization problems that lie outside the standard optimization toolbox. The algorithm

works to minimize the objective function.

Writing M-files for objective function
To use the Genetic Algorithm and Direct Search Toolbox the objective function to be

minimized is to be written in the form of M-file. This M-file should accept a row vector

with length equal to the number of independent variables for the objective function and

return a scalar.

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

9

Outline of the Algorithm
The following outline summarizes how the genetic algorithm works:

1- The algorithm begins by creating a random initial population.

2- The algorithm then creates a sequence of new populations, or generations.

At each step, the algorithm uses the individuals in the current generation, parents, to

create the next generation, children. To create the new generation, the following steps are

performed:

• Scores each member of the current population by computing its fitness value.

• Scales the raw fitness scores to convert them into a more usable range of values.

• Selects parents based on their fitness.

• Produces children from the parents. Children are produced either by making random

changes to a single parent, mutation, or by combining the vector entries of a pair of

parents, crossover.

• Replaces the current population with the children to form the next generation.

3- The algorithm stops when one of the stopping criteria is met. Stopping criteria could

be:

•Generations: The algorithm stops when the number of generations reaches the value of

Generations.

•Time limit: The algorithm stops after running for an amount of time in seconds equal to

Time limit.

•Fitness limit: The algorithm stops when the value of the fitness function for the best

point in the current population is less than or equal to Fitness limit.

•Stall generations: The algorithm stops if there is no improvement in the objective

function for a sequence of consecutive generations of length Stall generations.

•Stall time limit: The algorithm stops if there is no improvement in the objective

function during an interval of time in seconds equal to Stall time limit.

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

10

Example 2:

Suppose it is required to optimize the following function:

() 21
2
221

2
121 107243, xxxxxxxxf +−+−=

The first step is to write an M-file describing this objective function. This must accept a

row vector of x of length 2, representing the two variables x1 and x2 and return a scalar

which represents the value of the function f at x. Steps to write the M-file are:

1- From File menu select New

2- Select M-File from the drop menu. A new M-file is then opened in the editor.

3- Start to write the code for the objective function in the M-file:

function z = fun(x)

z = 3*x(1)^2 - 4*x(1)*x(2) + 2*x(2)^2 - 7*x(1) +10*x(2);

4- Save your file in a directory on the Matlab path with the name fun

5- To check that your M-file returns the right value, from the command window type:

fun([2 2])

This should return a value of 10 which is the value of the function f at x = [2 2]

Note that the Genetic Algorithm and Direct Search Toolbox minimizes the objective

function so if it is required to maximize a function you should convert it to a

minimization problem.

Example 3:

If it is required to maximize the function:

() 2
221

2
121 63, xxxxxxf +−=

The problem should be converted to a minimization problem by writing the M-file to

compute:

() 2
221

2
121 63, xxxxxxf −+−=−

This function will be then minimized.

Using GA toolbox

• From the command line (not studied here):

To use GA Toolbox from the command line, the function ga can be used:

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

11

[x fval] = ga (@fitnessfunction, Nvars, options)

Where:

@fitnessfunction: is used to handle to the fitness function

 Nvars: is the number of independent variables for the optimization problem

Options: This contains the options for the GA. Default options will be used if this is not

written in the argument.

The results will be given as:

fval: Final value of the fitness function

X: the point at which the final value of the fitness function is obtained

• Using GA Tool

Another way to work with GA without working at the command line is to use GA tool

based on Graphical User Interface GUI.

Typing gatool at the command line will open the tool and the following figure, Fig.4, will

appear:

Fig.4 GA Tool

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

12

The following information should be entered:

Fitness function: This represents the objective function to be minimized. This will be

entered on the form @fitnessfunction, where fitnessfunction is defined in a separate M-

file as described earlier.

Number of variables: This represents the length of the vector x as described in the m-file.

This is the number of independent variables in the optimization problem. In biological

words, this represents the number of Genes per Chromosome.

Pressing Start button will run the algorithm and the results of the optimization will be

displayed in Status and Results pan.

The options for the GA can be viewed and changed using the Options pane.

Example 4:

It is required to use GA to minimize the following function:

() 2
2

2
121 63, xxxxf +=

It is well known that the minimum of the function f is zero and occurs at x = [0 0]. To use

GA for the optimization problem we will follow the next steps:

Step 1: Open a new m-file and enter your objective function:

function z = fun1(x)

z = 3*x(1)^2 +6*x(2);

Step 2: Save the M-file in a directory on the Matlab path with the name fun1

Step 3: From the Matlab command window type gatool to open the GA tool.

Step 4: in the Fitness function tab enter @your m-file name to define your fitness

function to be minimized by GA

Step 5: in the number of variables tab enter 2

Step 6: From the plot pan choose the plots you want to see for the optimization problem.

Step 7: Browse the GA options to be used for the optimization.

Step 8: Press the Start button to start the optimization

You can try it several times with different GA options.

Note: If you restart the algorithm again you may find different results. This is because

that depends how far the initial population is from the solution and the stopping criteria.

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

13

In this example after running the GA toolbox with the default settings the solution was

obtained at the point (0.00187, 0.00102) with a function value of 1.667e-5 as shown in

Fig.5. Both mean and best fitness decay with no of generations until the algorithm stops.

Default settings: Selection: stochastic uniform, Crossover function: scattered, stopping

criteria generations=500.

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

14

50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

Generation

F
itn

es
s

va
lu

e

Best: 1.6671e-005 Mean: 1.0208

Best fitness

Mean f itness

Fig. 5 optimization outputs for default settings

By changing the selection function to Roulette, stopping criteria generations=100: The

solution is (-0.00099, 0.00288) giving a function value of 5.274e-5 as shown in Fig.6.

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

15

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

16

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Generation

F
itn

es
s

va
lu

e

Best: 5.2744e-005 Mean: 0.00080878

Best f itness

Mean fitness

Fig.6 optimization output for new settings

GA application in control
Due to its effectiveness in searching nonlinear, multi- dimensional search spaces, GA

can be applied in various applications in control such as tuning the gains of the PI

controller.
During the search process, GA looks for the optimal setting of the PI speed controller

gains which minimize a fitness function. This function is considered as the evolution

criteria for the GA and is usually chosen based on an error function. Each chromosome

represents a solution of the problem and hence it consists of two genes: the first one is the

Kp value and the other one is the Ki value: Chromosome vector = [Kp Ki].

GA starts by generating an initial population containing a number of chromosomes

then the fitness value of each chromosome in the initial population is calculated. The

three main parts of GA: Selection, Crossover and Mutation take place and then a new

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – GA
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

17

generation is produced. This procedure continues for a number of generations and then a

convergence to the optimal solution represented by a given chromosome is reached.

References
[1] http://cs.felk.cvut.cz/~xobitko/ga/ accessed on 28/11/07.

[2] Matlab Genetic Algorithm and Direct Search Toolbox user guide retrieved from:

http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/gads/gads_tb.pdf

[3] K.F. Man et al (1997) Genetic algorithms for control and signal processing.

Berlin: Springer, c1997.

[4] David E. Goldberg (1989) Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley Pub. Co., c1989.

http://cs.felk.cvut.cz/~xobitko/ga/�
http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/gads/gads_tb.pdf�

	Damian.Giaouris@ncl.ac.uk

